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latter result specializes the one proved by Brodal and Fagerberg for general permu-
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1 Introduction

A global computer infrastructure may be employed to provide dependable
and cost-effective access to a number of platforms of varying computational
capabilities, irrespective of their physical location or access point. This is, for
example, the case of grid environments [2] which enable sharing, selection,
and aggregation of a variety of geographically distributed resources. In such
a scenario, many different platforms can be available to run applications. For
load management reasons, the actual platform(s) onto which an application
is ultimately run, may not be known at the time when the application is
designed. Hence, it is useful to design applications which adapt automatically
to the actual platform they run on.

A typical modern platform features a hierarchical cascade of memories whose
capacities and access times increase as they grow farther from the CPU. In
order to amortize the larger cost incurred when referencing data in distant
levels of the hierarchy, blocks of contiguous data are replicated across the faster
levels, either automatically by the hardware (e.g., in the case of RAM-cache
interaction) or by software (e.g., in the case of disk-RAM interaction). The
rationale behind such a hierarchical organization is that the memory access
costs of a computation can be reduced when the same data are frequently
reused within a short time interval, and data stored at consecutive addresses
are involved in consecutive operations, two properties known as temporal and
spatial locality of reference, respectively.

Many models have been proposed to explicitly account for the hierarchical
nature of the memory system. A two-level memory organization, intended to
represent a disk-RAM hierarchy, is featured by the External Memory (EM)
model of Aggarwal and Vitter [3], which has been extensively used in liter-
ature to develop efficient algorithms that deal with large data sets, whose
performance is mainly affected by the number of disk accesses (see [4] for an
extensive survey on EM algorithms). In this model, operations can only be
performed on data residing in RAM, and data are transferred between RAM
and disk in blocks of fixed size, under the explicit control of the program which
decides where the blocks loaded from disk are placed in RAM and chooses the
replacement policy.

Another popular model featuring a two-level memory organization, intended
to represent a RAM-cache hierarchy, is the Ideal Cache (IC) model, intro-
duced by Frigo et al. [5]. As in the EM model, in the IC model operations
can only be performed on data residing in the fast level, the cache, and data
are moved between RAM and cache in fixed-size blocks (cache lines). How-
ever, unlike the EM model, block transfers are performed automatically by
the hardware whenever an operand which is not in cache is referenced, and
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an optimal off-line replacement policy is assumed. Algorithm design on the IC
aims at minimizing the number of RAM-cache transfers, called misses (cache
complexity), and the number of operations performed (work complexity). The
model has received considerable attention in the literature as the base for the
design of the so-called cache-oblivious algorithms, which run efficiently with-
out knowledge of the cache parameters, namely the cache size and the cache
line size. Most importantly, cache-oblivious algorithms attaining an optimal
number of misses on the IC can be shown, under certain circumstances, to
attain optimal number of misses at all levels of any multi-level cache hierar-
chy [5]. For these reasons, efficient cache-oblivious algorithms are attractive
in a global computing environment since they run efficiently on platforms
featuring different memory hierarchies without requiring previous knowledge
of the hierarchy parameters. A number of optimal cache-oblivious algorithms
[5,6] and data structures [7] have been proposed in literature for important
problems, e.g. matrix transposition, permuting, sorting and searching.

In several cases, optimality of cache-oblivious algorithms is attained under
the so-called tall cache assumption which requires the cache size in words to
be at least the square of the cache line size in words. Recently, Brodal and
Fagerberg [8] have proved that a cache-oblivious algorithm for sorting cannot
be optimal for every set of the values of the cache parameters; moreover,
they have shown that no cache-oblivious algorithm for permuting can exhibit
optimal cache complexity for all values of the cache parameters, even under
the tall cache assumption. Impossibility results of a similar flavor have been
proved by Bilardi and Peserico [9] in the context of DAG computations on
the Hierarchical Memory Model (HMM) [10], which does not account for the
spatial locality of reference.

Permuting a vector is a fundamental primitive in many problems; in particular
the so-called rational permutations are widely used. A permutation is rational
if it is defined by a permutation of the bits of the binary representations of the
vector indices. Matrix transposition, bit-reversal, and some permutations im-
plemented in the Data Encryption Standard (DES) [11] are notable examples
of rational permutations. There are some works in literature which deal with
the efficient implementation of specific rational permutations in a memory hi-
erarchy: e.g., Frigo et al. [5] propose a cache-oblivious algorithm for matrix
transposition which is optimal under the tall cache assumption, Carter and
Kang [12] give an optimal cache-aware algorithm for the bit-reversal of a vec-
tor. To the best of our knowledge, the only works in literature which propose
a general approach to rational permutations are [13,14,15,16]. The first two
papers propose efficient algorithms for performing any rational permutation in
the blocked HMM [13] and in the Uniform Memory Hierarchy (UMH) model
[14]. In [15,16] a lower bound on the number of disk accesses and an optimal
algorithm for performing rational permutations are given for the Disk Array
model [17] (which is similar to the EM one).
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In this paper we first bound from below the work needed to execute any family
of rational permutations in the IC model with an optimal cache complexity.
For achieving this bound, we prove a technical lemma which is a generaliza-
tion of the argument used in [3] to bound from below the number of disk
accesses of matrix transposition in the EM model. Then, we propose a cache-
oblivious algorithm for performing any rational permutation, which exhibits
optimal cache and work complexities under the tall cache assumption. Finally,
we show that for certain families of rational permutations (including matrix
transposition and bit-reversal) there is no cache-oblivious algorithm which
achieves optimality for every set of the values of the cache parameters. To this
purpose we follow a similar approach to the one employed in [8]. Specifically,
let A be a cache-oblivious algorithm for a specific class of rational permuta-
tions and consider the two sequences of misses generated by the executions
of A in two different ICs, where one model satisfies a particular assumption
while the other does not. We simulate these two executions in the EM model
and obtain a new EM algorithm solving the same problem of A. By adapting
the technical lemma given in the argument for bounding from below the work
complexity, we conclude that A cannot be optimal in both ICs.

The rest of the paper is organized as follows. In Section 2, we describe the
IC and EM models, and give a formal definition of rational permutation. In
Section 3, we provide the aforementioned lemma and the lower bound on the
work complexity. In Section 4, we describe the cache-oblivious algorithm. In
Section 5, we present the simulation technique and apply it to prove the limits
of any cache-oblivious algorithm performing a given set of rational permuta-
tions. In Section 6, we conclude with some final remarks.

2 Preliminaries

2.1 The models

Two models of memory hierarchy are used in this work. The first one is the
Ideal Cache model (IC(M,B)), introduced by Frigo et al. in [5], which con-
sists of an arbitrarily large main memory and a (data) cache of M words. The
memory is split into blocks of B adjacent words called B-blocks, or simply
blocks if B is clear from the context. The cache is fully associative and orga-
nized into M/B > 1 lines of B words: each line is empty or contains a B-block
of the memory. The processor can only reference words that reside in cache:
if a referenced word belongs to a block in a cache line, a cache hit occurs;
otherwise there is a cache miss and the block has to be copied into a line,
replacing the line’s previous content. The model adopts an optimal off-line
replacement policy, that is it replaces the block whose next access is furthest
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in the future [18]. We denote as work complexity the number of (elementary)
operations, and as cache complexity the number of misses.

The concept of cache-oblivious (resp., cache-aware) algorithm is also intro-
duced in [5], as an algorithm whose specification is independent (resp., depen-
dent) of the cache parameters M and B. It is easy to see that both cache-
oblivious and cache-aware algorithms are formulated as traditional RAM algo-
rithms. A cache-optimal (resp., work-optimal) algorithm denotes an algorithm
which reaches the best cache (resp., work) complexity when executed on an
IC(M,B), for each value of M and B. A number of cache-oblivious algorithms
proposed in literature are cache-optimal only under the tall cache assumption,
that is M ≥ B2.

The second model is the External Memory model (EM(M,B)) of Aggarwal
and Vitter [3]. It features two levels of memory: a (fast) RAM memory of
M words and an arbitrarily large (slow) disk. As the main memory in the
IC, the disk storage is partitioned into blocks of B adjacent words called B-
blocks, or simply blocks if B is clear from the context. The processor can only
reference words that reside in RAM. Data transfers between RAM and disk
are performed as follows: an input operation moves a B-block of the disk into
B words of the RAM, and an output operation moves B words of the RAM
into a B-block of the disk. The input/output operations (I/Os) are explicitly
controlled by the algorithm, and this is the main difference between the IC
and the EM models. We denote as the I/O complexity of an EM algorithm
the number of I/Os performed by the algorithm. We require an algorithm to
store its input (resp., output) in the disk at the beginning (resp., end) of its
execution. There is a natural correspondence between I/Os in the EM model
and cache misses in the IC model: a miss requires the fetching of a B-block
from memory and the eviction of a B-block from cache if there is no empty
line; hence a miss corresponds to at most two I/Os, and for these reasons we
will intentionally mix the two terms.

2.2 Rational permutations

An N-permutation ΠN is a bijective function from and to the set {0, . . . , N −
1}. This paper focuses on the so-called rational permutations defined as fol-
lows. Let N = 2n. Denote with σ an n-permutation and with (ain−1, . . . , a

i
0)

the binary representation of the value i ∈ {0, . . . , N − 1}, where ai0 denotes
the least significant bit (LSB). The rational N -permutation Πσ

N maps a value
i to the value whose binary representation is (aiσ(n−1), . . . , a

i
σ(0)), for each

i ∈ {0, . . . , N − 1}. We call σ the bit-permutation defining Πσ
N and denote

with σ−1 its inverse. Note that the inverse of Πσ
N is Π

(σ−1)
N .
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Given an n-permutation σ and an index j, with 0 ≤ j < n, we define the
following sets of bit positions:

• j-outgoing set : Ψ(j, σ) = {k : (k < j) ∧ (σ−1(k) ≥ j)};
• j-incoming set : Υ(j, σ) = {k : (k ≥ j) ∧ (σ−1(k) < j)}.

We call a bit position in Ψ(j, σ) (resp., Υ(j, σ)) j-outgoing bit position (resp.,
j-incoming bit position). In order to clarify the meaning of the j-outgoing and
j-incoming sets, let K and H be two integers in {0, . . . , N − 1} with binary
representations (aKn−1, . . . , a

K
0 ) and (aHn−1, . . . , a

H
0 ), respectively, and such that

H = Πσ
N(K). Then, the set Ψ(j, σ) contains the indices of the j LSBs in the

binary representation of K which, by virtue of permutation σ, appear among
the (n − j) most significant bits (MSBs) in the binary representation of H.
Similarly, the set Υ(j, σ) contains the indices of the n− j MSBs in the binary
representation of K which appear among the j LSBs in the binary representa-
tion of H. Note that the cardinalities of Ψ(j, σ) and Υ(j, σ) are equal: indeed,
if Ψ(j, σ) bits among the j LSBs are permuted in the (n − j) MSBs, then
Ψ(j, σ) bits among the (n− j) MSBs must be permuted in the j LSBs; hence,
by the definition of Υ(j, σ), |Ψ(j, σ)| = |Υ(j, σ)|. We define the j-outgoing
cardinality ψ(j, σ) as the cardinality of Ψ(j, σ) (or Υ(j, σ) equivalently).

Let V be a vector of N entries and V [i] be the i-th entry of V , with 0 ≤ i < N ;
we call i the index of entry V [i]. An algorithm performs the N -permutation
ΠN on V if it returns a vector U , distinct from V , such that U [i] = V [ΠN(i)]
for each i, with 0 ≤ i < N . Note that V [i] is permuted into U [Π−1

N (i)], where
Π−1
N is the inverse of ΠN . We suppose that a machine word is large enough to

contain a vector entry or the index of a vector entry, and that the entries of
any vector are stored in consecutive memory locations, sorted by indices 1 .

Let Σ be an infinite set of permutations which contains at most one n-
permutation for each n ∈ N. Note that each n-permutation σ ∈ Σ defines
a rational permutation Πσ

N , with N = 2n. An algorithm performs the rational
permutations defined by Σ if, when given in input an n-permutation σ ∈ Σ
and a vector V of N = 2n entries, it performs Πσ

N on V . For each N = 2n

such that there exists an n-permutation σ ∈ Σ, we denote by ψΣ(j,N) the
j-outgoing cardinality ψ(j, σ).

For example, let V be a vector representing a
√
N ×

√
N matrix stored in a

row-major layout. An algorithm which transposes the matrix stored in V for
each N = 2n, n even, is an algorithm which performs the rational permutations

1 We also suppose that the first entry of a vector stored in the memory (resp., disk)
of the IC(M,B) (resp., EM(M,B)) model is aligned with a B-block.
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defined by ΣT = {σTn : ∀ n > 1 and n even}, where

σTn (j) =
(
j +

n

2

)
mod n. (1)

Since the j-outgoing and j-incoming sets of σTn are

Ψ(j, σTn ) =


∅ if j = 0

{0, . . . , j − 1} if 0 < j ≤ n
2

{j − n
2
, . . . n

2
− 1} if n

2
< j < n

,

Υ(j, σTn ) =


∅ if j = 0

{n
2
, . . . , n

2
+ j − 1} if 0 < j ≤ n

2

{j, . . . n− 1} if n
2
< j < n

, (2)

the j-outgoing cardinality of ΣT is

ψΣT (j, 2n) = min{j, n− j}. (3)

In the same fashion, an algorithm for the bit-reversal of a vector is an algorithm
which performs the rational permutations defined by ΣR = {σRn ,∀ n ≥ 1},
where

σRn (j) = n− j − 1

The j-outgoing and j-incoming sets of a bit-permutation σRn are

Ψ(j, σRn ) =


∅ if j = 0

{0, . . . , j − 1} if 0 < j ≤ bn
2
c

{0, . . . , n− j − 1} if bn
2
c < j < n

,

Υ(j, σRn ) =


∅ if j = 0

{n− j, . . . n− 1} if 0 < j ≤ bn
2
c

{j, . . . , n− 1} if bn
2
c < j < n

,

from which follows that the j-outgoing cardinality of ΣR is

ψΣR(j, 2n) = min{j, n− j}. (4)

3 Lower bounds

In this section we derive a lower bound on the work complexity of any algo-
rithm which performs a given family of rational permutations with optimal
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cache complexity. To this purpose, we prove a technical lemma which general-
izes a technical result given in [3] for bounding from below the number of disk
accesses of matrix transposition in the EM model. The lower bound on the
cache complexity given in [15] can be proved as a corollary of this technical
lemma. Finally, we prove that the cache-aware algorithm obtained by the one
given in [16] exhibits optimal cache and work complexities when executed in
an IC(M,B), for each M and B.

Let Σ be the set of permutations defined in Subsection 2.2, and consider an
algorithm which is able to perform any rational N -permutation defined by Σ
on a vector of N entries. We denote with QΣ(N,M,B) the cache complexity of
this algorithm, and with V and U the input and output vectors, respectively
(recall that the two vectors V and U are distinct and each one is stored in N
consecutive memory locations).

Let the i-th target group, 1 ≤ i ≤ N/B, be the set of V ’s entries that will
ultimately be in the i-th constituent B-block of U . We define the following
convex function 2 :

f(x) =

x log x if x > 0

0 if x = 0
. (5)

Let γ be a B-block of the memory (if there is a copy of the block in cache,
we refer to that copy). The togetherness rating of γ (Cγ(q)) and the potential
function (POT (q)) after q misses are defined as:

Cγ(q) =
N/B∑
i=1

f(xγ,i), POT (q) =
∑

∀B-block γ

Cγ(q),

where xγ,i denotes the number of entries in γ belonging to the i-th target
group just before the (q + 1)-st miss 3 . As proved in [15], the values of the
potential function at the beginning and at the end of the algorithm are given
by the following equations:

POT (0) = N log
(

B

2ψΣ(logB,N)

)
, POT (QΣ(N,M,B)) = N logB. (6)

Let ∆POT (q) denote the increase in potential due to the q-th miss, with
1 ≤ q ≤ QΣ(N,M,B), that is ∆POT (q) = POT (q) − POT (q − 1). The
following lemma provides an upper bound on ∆POT (q), that is the maximum
increase due to a rearrangement of the entries in cache after the q-th miss.

2 We denote with log the binary logarithm and with e the Napier’s constant.
3 If there is no (q + 1)-st miss, we consider the end of the algorithm; we use this
convention whenever the (q + 1)-st miss is not defined.
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Lemma 1 Let γ be the block fetched into the cache as a consequence of the
q-th miss, and C be the set of at most M/B − 1 blocks residing in cache with
γ. Denote with W the number of entries that are in γ just before the q-th miss
and are in a block belonging to C just before the (q + 1)-st miss, or viceversa.
Then,

∆POT (q) ≤ B +W log
2eM

W
(7)

for each q, with 1 ≤ q ≤ QΣ(N,M,B).

Proof. If there is no empty cache line when γ is fetched, then a block is evicted
from the cache, but this operation does not affect the potential function. Block
γ exchanges entries with blocks in C without incurring any miss; then, at
most M/B blocks increase their togetherness ratings before the next miss. We
focus on data exchanged between γ and blocks in C, since the increase in the
potential function due to rearrangements between two blocks α and β in C
was considered when β was fetched in cache (if we suppose that β was fetched
after α). We use the following notation:

• mα,i: number of entries in block α belonging to the i-th target group just
before the q-th miss, with α ∈ C ∪ {γ} and 1 ≤ i ≤ N/B;
• wα,β,i: number of entries belonging to the i-th target group, which are in

block α just before the q-th miss, and are in block β just before the (q+ 1)-
st miss, with α, β ∈ C ∪ {γ}, α 6= β and 1 ≤ i ≤ N/B. (Actually, we are
interested only in wγ,α,i and wα,γ,i, with α ∈ C.)

We partition the target groups into two sets P and R: the i-th target group
belongs to P if and only if

∑
α∈C(wα,γ,i − wγ,α,i) ≥ 0, while it belongs to R

otherwise. Let:

WP =
∑
i∈P

∑
α∈C

wα,i WR =
∑
i∈R

∑
α∈C

w̃α,i,

where wα,i = wα,γ,i−wγ,α,i and w̃γ,i = wγ,α,i−wα,γ,i. Note that WR+WP ≤ W .
The mα,i values are limited by the constraints below:

∑
i∈P

mγ,i ≤ B −WP ,
∑
α∈C

∑
i∈R

mα,i ≤M −WR. (8)

By the definition of the convex function f (Equation 5), the increase in po-
tential is

∆POT (q) =
∑

α∈C∪{α}
(Cα(q)− Cγ(q − 1)) ≤ ∆POTR(q) + ∆POTP (q),
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where

∆POTR(q) =
∑
i∈R

∑
α∈C

[f (mα,i + w̃α,i)− f (mα,i)− f (w̃α,i)] , (9)

∆POTP (q) =
∑
i∈P

[
f

(
mγ,i +

∑
α∈C

wα,i

)
− f (mγ,i)−

∑
α∈C

f (wα,i)

]
. (10)

By Inequalities 8 and the properties of concave functions, an upper bound
on ∆POTR(q) is obtained by setting mα,i = (M −WR)/(|R||C|) and w̃α,i =
WR/(|R||C|). Then:

∆POTR(q) ≤ (M −WR) log
(

1 +
WR

M −WR

)
+WR log

M

WR

≤

≤ WR log
eM

WR

, (11)

since (1 + 1/x)x ≤ e if x ≥ 1. In the same fashion, an upper bound on
∆POTP (q) is obtained by pluggingmγ,i = (B−WP )/|P | and wα,i = WP/(|P ||C|)
into Equation 10:

∆POTP (q) ≤ (B −WP ) log
B

B −WP

+WP log
B

WP

+WP log |C| ≤

≤ B +WP log
M

WP

. (12)

By Equations 11 and 12, and the fact that WR + WP ≤ W , we derive the
following upper bound:

∆POT (q) ≤ B +WP log
M

WP

+WR log
eM

WR

≤ B +W log
2eM

W
.

2

Corollary 2 The increase in the potential function due to the q-th miss, with
1 ≤ q ≤ N/B, is upper bounded by 2B log 2eM

B
.

Proof. When a block γ is fetched into the cache, at most 2B entries are ex-
changed between γ and the other blocks residing in cache before the (q+ 1)-st
miss. The corollary follows Lemma 1 by setting W = 2B. 2

Lemma 1 allows us to derive an alternative proof of the lower bound proved
in [15], as reported below.

Theorem 3 [15] Let Σ be an infinite set of permutations which contains
at most one n-permutation for each n ∈ N, and let N = 2n. An algorithm
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which performs any rational N-permutation defined by an n-permutation in Σ
requires

Ω

(
NψΣ(logB,N)

B log(M/B)
+
N

B

)
misses in an IC(M,B), for each value of M and B. 4

Proof. The theorem follows by Corollary 2 and Equations 6 because

QΣ(N,M,B)∑
q=1

∆POT (q) ≥ POT (QΣ(N,M,B))− POT (0).

2

An obvious lower bound on the work complexity of an algorithm performing
rational permutations is Ω (N) since N entries have to be moved from the
input vector V to the output vector U . Moreover, this work complexity is
yielded by the näıve algorithm which moves each entry V [Πσ(i)] directly into
U [i], but this algorithm is not cache-optimal. We wonder whether there is a
cache-optimal IC algorithm whose work complexity is Θ (N) for each value of
IC parameters. The following theorem states that such an algorithm cannot
exist.

Theorem 4 Let Σ be an infinite set of permutations which contains at most
one n-permutation for each n ∈ N, and let N = 2n. Consider an algorithm
which performs any rational N-permutation defined by an n-permutation in Σ
and whose cache complexity is

QΣ(N,M,B) ∈ Θ

(
NψΣ(logB,N)

B log(M/B)
+
N

B

)
,

in an IC(M,B), for each value of M and B. Then its work complexity is

WΣ(N,M,B) ∈ Ω

(
NψΣ(logB,N)

log(M/B)
+N

)
(13)

when M/B > b, for a suitable constant b > 1.

Proof. If ψΣ(logB,N) ≤ log(M/B), Equation 13 becomes the Ω (N) lower
bound. Suppose ψΣ(logB,N) > log(M/B), and let c and d be two suitable
constants such that

c
NψΣ(logB,N)

B log(M/B)
≤ QΣ(N,M,B) ≤ d

NψΣ(logB,N)

B log(M/B)
. (14)

4 Note that the lower bound given in [15] is Ω
(
N max{ψΣ(logM,N),ψΣ(logB,N)}

B log(M/B) + N
B

)
,

but it easy to see that it is asymptotically equivalent to the one given in Theorem 3.
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Denote with Q′Σ(N,M,B) the number of misses, each of which increases
the potential by at least (B/2d) log(M/B). We claim that Q′Σ(N,M,B) =
Θ (QΣ(N,M,B)). Let ∆POT be the upper bound given in Corollary 2 on
the increase in the potential function due to a miss, and let ∆POT1 =
(B/2d) log(M/B). Then,

POT (Q)−POT (0) ≤
≤ (QΣ(N,M,B)−Q′Σ(N,M,B)) ∆POT1 +Q′Σ(N,M,B)∆POT

≤ QΣ(N,M,B)∆POT1 +Q′Σ(N,M,B)∆POT

From Equations 6 and Inequality 14, we derive

Q′Σ(N,M,B)
(

2B log
(

2eM

B

))
≥ NψΣ(logB,N)− dNψΣ(logB,N)/(2d),

which implies

Q′Σ(N,M,B) ∈ Ω

(
NψΣ(logB,N)

B log(M/B)

)
.

Let q be a miss which increases the potential by at least ∆POT1, and let γ be
the block fetched into the cache in the q-th miss. By Lemma 1, if at most W
entries are exchanged between γ and the other blocks resident in cache with
γ, the potential increases by at most (B+W log(2eM/W )). If M/B ≥ b for a
suitable constant b > 1 and W < B/4d, then (B+W log(2eM/W )) < ∆POT1,
which is a contradiction. Then W = Θ (B). Since an IC operation moves only a
constant number of words between blocks, there are at least Ω (B) operations
per miss. The theorem follows. 2

Corollary 5 Each rational permutation Πσ
N , defined by a bit-permutation σ,

can be performed by an optimal cache-aware algorithm with work complexity

W (N,M,B) ∈ Θ

(
Nψ(logB, σ)

log(M/B)
+N

)
,

and cache complexity

Q(N,M,B) ∈ Θ

(
Nψ(logB, σ)

B log(M/B)
+
N

B

)
,

in an IC(M,B), for each value of M and B.

Proof. An optimal algorithm for performing a rational permutation Πσ
N in a

Disk Arrays model [17] with p disks is given in [16]. By setting p = 1, this
algorithm translates automatically into an EM algorithm; then, by remov-
ing all I/O operations, the algorithm becomes a cache-aware IC algorithm.
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Clearly, the number of block transfers performed by the optimal off-line pol-
icy of the IC model cannot be bigger than the number of disk accesses per-
formed in the Disk Arrays model. This cache-aware algorithm is composed
of ψ(logB, σ)/(B log(M/B)) phases, each of which requires Θ (N) work and
Θ (N/B) misses. By Theorems 3 and 4, this algorithm exhibits optimal cache
and work complexities in an IC(M,B), for each value of M and B. 2

4 Cache-Oblivious Algorithm

In this section we propose an efficient cache-oblivious algorithm which per-
forms each rational permutation Πσ

N on a vector V of N = 2n entries, where
σ is an n-permutation. This cache-oblivious algorithm exhibits optimal cache
and work complexities under the tall cache assumption. Moreover, we describe
an efficient cache-oblivious algorithm for computing all the values Πσ

N(i), with
0 ≤ i < N : indeed, the computation of a generic bit-permutation σ cannot be
considered an elementary operation.

4.1 Computing the values of a rational permutation

Let N = 2n, and let Πσ
N be the rational permutation defined by an n-

permutation σ. In this subsection we describe an algorithm which computes
a vector P of N entries, where P [i] = Πσ

N(i) for each i, with 0 ≤ i < N . The
algorithm derives Πσ

N(i) from Πσ
N(i − 1) (note that Πσ

N(0) = 0 for each σ),
comparing the binary representations of i and i− 1.

Specifically, the algorithm uses four vectors:

• S where S[j] = σ(j) for each j, with 0 ≤ j < n;
• I where I[j] = σ−1(j) for each j, with 0 ≤ j < n;
• P where, at the end of the algorithm, P [i] = Πσ

N(i) for each i, with 0 ≤ i <
N ;
• A where the j-th entry stores the j-th bit of the binary representation of

the current index i, with 0 ≤ j < n and 0 ≤ i < N (A[0] is the LSB).

More succinct data structures can be adopted, but we prefer the näıve ones for
the sake of simplicity. The input of the algorithm is S (i.e. the bit-permutation
σ), while the output is P . Note that I can be computed from S by means of
any sorting algorithm. The algorithm for computing P is divided into N − 1
stages: in the i-th stage, with 0 < i < N , the algorithm adds 1 (modulo N) to
the binary representation of i− 1 stored in A, and derives P [i] from P [i− 1]

13



according to the differences between the binary representations of i and i− 1.
The algorithm’s pseudocode gives a more formal, and simpler, description:

Algorithm 1 Computes the values of a bit-permutation σ; let N = 2n.

INPUT: a vector S of n entries which represents the n-permutation σ;
OUTPUT: a vector P of N entries, where P [i] = Πσ

N(i) for each i, with
0 ≤ i < N ;

1: Compute I from S through Mergesort;
2: Set all entries of A to 0;
3: P [0]← 0;
4: for i = 1 to N − 1 do
5: P [i]← P [i− 1];
6: j ← 0;
7: while A[j] = 1 do
8: A[j]← 0; // The j-th bit of i is set to 0
9: P [i]← P [i]− 2I[j]; // The I[j]-th bit of P [i] is set to 0

10: j ← j + 1;
11: end while;
12: A[j]← 1; // The j-th bit of i is set to 1
13: P [i]← P [i] + 2I[j]; // The I[j]-th bit of P [i] is set to 1
14: end for;

Note that Algorithm 1 is cache-oblivious and it is based on the binary counter
[19].

Theorem 6 The work and cache complexities of Algorithm 1 are:

W (N,M,B) ∈ Θ (N) , (15)

Q(N,M,B) ∈ Θ
(
N

B

)
(16)

in an IC(M,B), for each value of M and B such that M/B ≥ 4.

Proof. The inverse of σ, that is I, can be efficiently computed through Merge-
sort with work complexity o(N) and cache complexity o(N/B) [8].
In order to bound the cache complexity of the for loop (Steps 4-14), we de-
scribe a particular replacement policy for the cache and compute the cache
complexity using this policy; since the IC model adopts an optimal off-line re-
placement policy, the actual cache complexity cannot be greater. We suppose
the cache to have at least four lines, and we associate the vectors I, P and A
with three distinct cache lines: that is, there is exactly one cache line for all
the constituent blocks of each vector. The fourth line is used for support vari-
ables. Since the entries of P are required in sequential order, each constituent
block of P is fetched only once into the line associated with P . Therefore, the
number of misses due to P is Θ (N/B).
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Let αi be the memory block which contains the entries A[iB], . . . , A[(i+1)B−
1], with 0 ≤ i < dn/Be. When an entry A[iB + k], with 0 ≤ i < dn/Be and
1 ≤ k < B, is required, the corresponding block αi is in cache since the pre-
vious required A’s entry was A[iB + k − 1], which also belongs to αi. On the
other hand, when A[iB] is referenced, block αi is not in cache and a miss
occurs. Since A[j] flips N/2j times, with 0 ≤ j < n, during the course of the
algorithm [19], each block αi is fetched into the cache N/2iB times. Therefore,
the number of misses due to A is Θ(N/2B). Since I[i] is read only after A[i]
for each i, with 0 ≤ i < n, an upper bound for A translates into a bound for
I; then, the number of misses due to I is Θ(N/2B). Equation 16 follows. Since
there are Θ(B) operations for each block, Equation 15 also follows. 2

4.2 Cache-oblivious algorithm

In this subsection we present a cache-oblivious algorithm which performs any
rational permutation Πσ

N on a vector V of N = 2n entries, where σ and V
are given as input. As usual, U denotes the output vector. Before describing
the algorithm, note that the recursive cache-oblivious algorithm for matrix
transposition described in [5] moves each entry of the input matrix to the
corresponding entry of the output matrix in an order based on the Z-Morton
layout [20]. This particular pattern of access to V minimizes the cache com-
plexity of the algorithm under the tall cache assumption. In the same fashion,
our algorithm first derives an efficient pattern of access to V from σ, and then
it moves each V ’s entry, in an order given by the pattern, into the right U ’s
entry.

The pattern of access to V is defined by the n-permutation τσ given by the
following algorithm. 5

5 For simplifying Algorithms 2 and 3, we use the functions τσ, τ−1
σ , σ, σ−1 instead

of their vector representations.
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Algorithm 2 Computes the bit-permutation τσ
INPUT: an n-permutation σ;
OUTPUT: the n-permutation τσ;
1: Compute σ−1 from σ through Mergesort;
2: i = 0; j = 0;
3: while j < n do
4: if σ−1(i) ≥ i then {τ−1

σ (j) = i; j = j + 1;}
5: if σ(i) > i then {τ−1

σ (j) = σ(i); j = j + 1;}
6: i = i+ 1;
7: end while
8: Compute τσ from τ−1

σ through Mergesort;

The algorithm for performing Πσ
N on V is divided into N steps: in the i-th

step, the entry V [Πτσ
N (i)] is moved into U [Π

(σ−1)
N (Πτσ

N (i))], with 0 ≤ i < N .
The pseudocode of the algorithm is the following:

Algorithm 3 Performs the rational permutation Πσ
N

INPUT: an n-permutation σ, and a vector V of N = 2n entries;
OUTPUT: a vector U of N entries, where U [Πσ

N(i)] = V [i] for each i, with
0 ≤ i < N ;

1: Compute σ−1 from σ through Mergesort;
2: Compute τσ through Algorithm 2;

3: Compute the values of the bit-permutations Πτσ
N and Π

(σ−1)
N through Al-

gorithm 1;
4: for i = 0 to N − 1 do
5: U [Π

(σ−1)
N (Πτσ

N (i))] = V [Πτσ
N (i)];

6: end for

In order to prove the correctness and to evaluate the cache and work com-
plexities of Algorithm 3, we introduce the following two lemmas.

Lemma 7 Let σ be an n-permutation. Then the function τσ defined by Algo-
rithm 2 is an n-permutation.

Proof. We claim that τ−1
σ (hence τσ) is a permutation. Suppose, for the sake

of contradiction, that there are two values j′ and j′′, 0 ≤ j′ < j′′ < n such
that τ−1

σ (j′) = τ−1
σ (j′′) = p. Clearly, p cannot be assigned to both τ−1

σ (j′) and
τ−1
σ (j′′) by two steps of the same kind. Then, suppose that p is assigned to
τ−1
σ (j′) in Step 4 and to τ−1

σ (j′′) in Step 5: by the if statements in Steps 4
and 5, there exists a value q ≥ p such that σ(q) = p and σ(q) > q, but this is a
contradiction. In the same fashion, it can be proved that p cannot be assigned
to τ−1

σ (j′) in Step 5 and to τ−1
σ (j′′) in Step 4. Therefore, τ−1

σ is a permutation
since there are n values and no duplicates. 2
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Lemma 8 Let σ be an n-permutation, and let τσ be the bit-permutation de-
fined by Algorithm 2. Consider the set ρi = {τ−1

σ (k) : 0 ≤ k ≤ i+ ψ(i+ 1, σ)}
for each i, with 0 ≤ i < n− 1, then

ρi = {0, . . . , i} ∪Υ(i+ 1, σ).

Proof. In order to prove the lemma, we show by induction on i, with 0 ≤
i < n − 1, that at the end of the i-th iteration of Algorithm 2, we have
j = i + ψ(i + 1, σ) + 1 and {τ−1

σ (k) : 0 ≤ k ≤ i + ψ(i + 1, σ)}, which de-
fines ρi, is equal to {0, . . . , i} ∪ Υ(i + 1, σ). If i = 0 the claim is clearly true.
Let i > 0. Denote with j̃ the value of j at the beginning of the i-th iter-
ation, that is j̃ = (i − 1) + ψ(i, σ) + 1 by the inductive hypothesis. If i is
assigned to τ−1

σ (j̃) in Step 4, then i /∈ ρi−1; otherwise i ∈ ρi−1 and, in partic-
ular, i ∈ Υ(i, σ). If σ(i) is assigned to τ−1

σ (j̃) or τ−1
σ (j̃ + 1) in Step 5, then

either σ(i) ∈ Υ(i + 1, σ) − Υ(i, σ), or σ(i) ∈ Υ(i, σ). A simple case analy-
sis shows that at the end of the i-th iteration j = i + ψ(i + 1, σ) + 1 and
ρi = {0, . . . , i} ∪Υ(i+ 1, σ) 2

As example, suppose σ = σTn , where σTn is the bit-permutation associated with
the transposition of a 2n/2× 2n/2 matrix (Equation 1). Then τ−1

σ is so defined:

τ−1
σ (i) =


i
2

if i even and 0 ≤ i < n

n
2

+ i−1
2

if i odd and 0 ≤ i < n
.

According with Lemma 8, it is easy to see that by Equation 2

ρi =

 {0, . . . , i} ∪ {
n
2
. . . n

2
+ i} if 0 ≤ i < n

2

{0, . . . , n− 1} if n
2
≤ i < n− 1

.

Theorem 9 Let σ be an n-permutation, and let N = 2n. Then, the cache-
oblivious Algorithm 3 performs the rational permutation Πσ

N and requires

W (N,M,B) ∈ Θ (N) (17)

work and

Q(N,M,B) ∈

O
(
N
B

)
if M

B
≥ 21+ψ(logB,σ)

O
(
NB
M

)
if M

B
< 21+ψ(logB,σ)

(18)

misses in an IC(M,B), for each value of M and B such that M/B > 4.

Proof. The correctness of Algorithm 3 follows from the fact that τσ and Πτσ
N

are permutations.
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We now analyze the work and cache complexities of Algorithm 3. Recall that
ψ(logB, σ) is the cardinality of Ψ(j, σ) (or Υ(j, σ) equivalently). For simpli-
fying the notation, we denote ψ(logB, σ) with ψ. As argued in the proof of
Theorem 6, the computation of the inverse of an n-permutation requires o(N)
work and o(N/B) misses. Hence, the computation of σ−1 and Algorithm 2
(Steps 1-2) can be performed in o(N) operations and o(N/B) misses. The

computation of the values of Πτσ
N and Π

(σ−1)
N (Step 3) requires linear work

and Θ (N/B) misses (Theorem 6). Note that the values Π
(σ−1)
N (Πτσ

N (i)) can
be computed by an adaptation of Algorithm 1, without affecting the com-

plexities: as Πτσ
N (i) is derived from Πτσ

N (i − 1), Π
(σ−1)
N (Πτσ

N (i)) is obtained by

Π
(σ−1)
N (Πτσ

N (i− 1)) comparing the binary representations of i and i− 1.
We now upper bound the cache complexity of Steps 4-6, in which all the entries
of V are permuted into U . Suppose M

B
≥ 21+ψ and partition the sequence of

N accesses to V into N/(B2ψ) segments. Let F i = {Πτσ
N (iB2ψ), . . . ,Πτσ

N ((i +
1)B2ψ − 1)}, with 0 ≤ i < N/B2ψ, be the set of the indices of the en-
tries accessed in the i-th segment. By Lemma 8, the binary representations
of the values in F i differ on (logB + ψ) bit positions, and ψ of these are
the (logB)-incoming bit positions of σ, which are among the log(N/B) MSBs
by definition. Then, the B2ψ entries of V with indices in F i are distributed
among 2ψ blocks. Moreover, in the (logB + ψ) bit positions there are also
ψ (logB)-outgoing bit positions of σ; then, by the definition of outgoing bit
position, the B2ψ entries are permuted into 2ψ blocks of the output vector U .
Since there are at least 21+ψ cache lines, the permutation of entries indexed
by the values in Fi requires Θ

(
2ψ
)

misses, and the permutation of the whole

vector V requires Θ (N/B) misses.
Let M

B
< 21+ψ, and let ϕ be the maximum integer in [0, logB[ such that

|Ψ(logB, σ)∩Ψ(ϕ, σ)| = log(M/2B), that is ϕ denotes the bigger bit position
such that exactly log(M/2B) (logB)-incoming bit positions are permuted into
positions smaller than ϕ. Note that ϕ is well defined since |Ψ(logB, σ)| = ψ >
log(M/(2B)). We use the previous argument, except for the segment length.
Specifically, partition the sequence of N accesses to V into N/(2ϕM/(2B))
segments and let F i = {Πτσ

N (i2ϕM/(2B)), . . . ,Πτσ
N ((i+1)2ϕM/(2B)−1}, with

0 ≤ i < N/(2ϕM/(2B)), be the set of the indices of the entries required
in the i-th segment. The binary representations of the values in F i differ
on ϕ + log(M/(2B)) bit positions, and (log(M/2B)) of these are (logB)-
incoming bit positions of σ. Then the 2ϕM/(2B) entries of V with indices in
F i are distributed among M/(2B) blocks. An argument similar to the one
used above proves that these 2ϕM/(2B) entries are permuted into at most
M/(2B) blocks of the output vector U . Therefore, the permutation steps re-
quires O (N/2ϕ) = O (NB/M) misses, since ϕ ≥ log(M/(2B)), and Equa-
tion 18 follows. The proof of Equation 17 is straightforward. 2

By Theorem 9 and the lower bounds on the work and cache complexities
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given in Section 3, the cache-oblivious Algorithm 3 is optimal when M/B ≥
21+ψ(logB,σ). Since ψ(logB, σ) ≤ logB, the tall cache assumption (i.e.M ≥ B2)
is sufficient to guarantee cache and work optimality of the cache-oblivious al-
gorithm for each rational permutation. Remember that by Corollary 5, there
exists a cache-aware algorithm for performing rational permutations which
exhibits optimal cache and work complexities for all values of the IC parame-
ters. In the next section, we will show that a similar cache-oblivious algorithm
cannot exist.

5 Limits of cache-oblivious rational permutations

Theorem 4 proves that the work complexity of a cache-optimal algorithm is
ω(N) when M/B ∈ o(2ψΣ(logB,N)), and Θ (N) otherwise. Clearly, the work
complexity of a cache-oblivious algorithm is independent of the cache param-
eters (this is not the case, in general, for cache complexity); hence, a cache-
oblivious algorithm cannot have optimal work complexity for each value of
M and B. One can wonder whether there exists a cache-oblivious algorithm
which is cache-optimal for each M and B, regardless of the work complex-
ity. In this section we will prove that such an algorithm cannot exist. To this
purpose we follow a similar approach to the one employed in [8].

Let Σ be an infinite set of permutations which contains at most one n-
permutation for each n ∈ N, let N = 2n, and let A be a cache-oblivious algo-
rithm which performs any rationalN -permutation defined by an n-permutation
in Σ on a vector of N entries. Consider the two sequences of misses generated
by the executions of A in two different ICs, where one model satisfies a par-
ticular assumption we will define, while the other does not. We simulate these
two executions in the EM model and obtain a new EM algorithm solving the
same problem of A. By adapting the argument described in Subsection 3 to
bound from below the number of disk accesses, we conclude that A cannot be
optimal in both ICs.

5.1 The simulation technique

In this subsection we describe a technique for obtaining an EM algorithm from
two executions of a cache-oblivious algorithm in two different IC models. The
technique is presented in a general form and is a formalization of the ad-hoc one
employed in [8] for proving the impossibility result for general permutations.

Consider two models C1=IC(M,B1) and C2 = IC(M,B2), where B1 < B2. For
convenience, we assume B2 to be a multiple of B1. Let A be a cache-oblivious
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algorithm for an arbitrary problem and let Q1 and Q2 be its cache complexities
in the two models, respectively. We define an algorithm A′ for EM(2M,B2)
which emulates in parallel the executions of A in both C1 and C2 and solves
the same problem of A.

Let us regard the RAM in EM(2M,B2) as partitioned into two contiguous
portions of size M each, which we refer to as M1 and M2, respectively. In
turn, portion M1 is subdivided into blocks of B1 words (which we call B1-
rows), and portion M2 is subdivided into blocks of B2 words (which we call
B2-rows), so that we can establish a one-to-one mapping between the cache
lines of C1 and the B1-rows of M1, and a one-to-one mapping between the
cache lines of C2 and the B2-rows of M2. Algorithm A′ is organized so that
its I/Os coincide (except for some slight reordering) with the I/Os performed
by A in C2, and occur exclusively between the disk and M2. On the other
hand, A′ executes all operations prescribed by A on data in M1

6 . Since
there are no I/Os between M1 and the disk, data are inserted into M1 by
means of transfers of B1-rows between M1 and M2, which coincide with the
I/Os performed by A in C1.

Let us now see in detail how the execution of A′ in the EM(2M,B2) de-
velops. Initially all the words in M1 and M2 are empty, that is filled with
NIL values, and the EM disk contains the same data of the memory of C2

(or C1 indistinguishably) with the same layout (a one-to-one relation between
the B2-blocks of C2 and the B2-blocks of the disk can be simply realized).
Let oi be the i-th operation of A, i = 1 . . . h. The execution of A in Ci,
1 ≤ i ≤ 2, can be seen as a sequence Li of operations interleaved with
I/Os. Since operations in L1 and L2 are the same, we build a new sequence
L=Γ2

1Γ1
1o1 . . .Γ

2
jΓ

1
joj . . .Γ

2
hΓ

1
hohΓ

2
h+1Γ1

h+1. Each Γij, with 1 ≤ j ≤ h + 1 and
1 ≤ i ≤ 2, is defined as follows:

• Γi1 is the sequence of I/Os that precede o1 in Li.
• Γij, 1 < j ≤ h, is the sequence of I/Os which are enclosed between oj−1 and
oj in Li.
• Γih+1 is the sequence of I/Os performed after oh in Li.

Note that a Γij can be empty. The length of L, denoted as |L|, is the sum of
the number h of operations and the size of all Γij, with 1 ≤ j ≤ h + 1 and
1 ≤ i ≤ 2. Let A′ be divided into |L| phases. The behavior of the j-th phase
is determined by the j-th entry lj of L:

(1) lj is an operation: A′ executes the same operation in M1.
(2) lj is an input of a B2-block (i.e. an input of L2): A′ fetches the same

6 Note that the operations of A do not include I/Os since block transfers are au-
tomatically controlled by the machine. Moreover, A’s operations are the same no
matter whether execution is in C1 or C2.
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B2-block from the disk into the B2-row of M2 associated with the line
used in C2.

(3) lj is an input of a B1-block (i.e. an input of L1): let γ be such a B1-block
and γ′ be the B2-block containing γ. Since there is no prefetch in the IC
model, the next operation of A requires an entry in γ; thus γ′ must be in
the cache of C2, too. For this reason, we can assume that γ′ was, or has
just been, fetched into a B2-row of M2. A′ copies γ in the right B1-row
of M1 and replaces the copy of γ in M2 with B1 NIL values.

(4) lj is an output of a B2-block (i.e. an output of L2): A′ moves the respective
B2-row of M2 to the disk, replacing it with B2 NIL values.

(5) lj is an output of a B1-block (i.e. an output of L1): let γ be such a B1-
block and γ′ be the B2-block containing γ. If γ′ is still in M2, then A′
copies γ from M1 into γ′ and replaces γ’s row with B1 NIL values. The
second possibility (i.e. γ′ is not inM2) can be avoided since no operations
are executed between the evictions of γ′ and γ. If some operations were
executed, both blocks γ and γ′ would be kept in cache (and so inM1 and
M2). Therefore, we can suppose γ was removed just prior to the eviction
of γ′.

It is easy to see that every operation of A can be executed by A′ in M1,
since there is a one to one relation between the cache lines of C1 and the rows
ofM1 (excluding the B1-blocks whose evictions from cache were anticipated,
see fifth point). M2 is a “semimirror” of C2, in the sense that it contains the
same B2-blocks of C2 while A is being executed, except for those sub B1-blocks
which are also in M1. By rules 2 and 4, the I/O complexity of A′ is at most
2Q2 (recall that a miss in the IC model is equivalent to at most two I/Os in
the EM model).

Let K = Q1B1/Q2; it is easy to see that K ≤ B2. Indeed, if K were greater
than B2, a replacement policy for C1 which requires Q2B2/B1 < Q1 misses
would be built from the execution of A in C2; but this is a contradiction since
the replacement policy of the IC model is optimal. A′ can be adjusted so that
there are at most K words exchanged between M1 and a B2-block in M2

before this block is removed from the memory: it is sufficient to insert some
dummy I/Os. This increases the I/O complexity of A′ from 2Q2 to at most
2Q2 + 2Q1B1/K = 4Q2 I/Os. In particular, there are at most 2Q2 inputs and
2Q2 outputs.

We define the working set W(q) after q I/Os as the content of M1 plus the
words in the B2-blocks of M2 that will be used by A′ (moved to M1) before
the B2-blocks are evicted. When A′ fetches a B2-block from the disk, we can
suppose that the at most K entries which will be moved betweenM1 and the
block are immediately included in the working set.
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5.2 Impossibility result for rational permutations

In this subsection we prove that an optimal cache-oblivious algorithm which
performs the rational permutations defined by Σ cannot exist for each value
of the cache parameters.

Theorem 10 Let Σ be an infinite set of permutations which contains at most
one n-permutation for each n ∈ N, and let N = 2n. Consider a cache-oblivious
algorithm A which performs any rational N-permutation defined by an n-
permutation in Σ. If ψΣ(i, N) is not decreasing in N for each fixed i, and it
is non decreasing in i for each fixed N and for each i < (logN)/2, then A
cannot be cache-optimal for each value of the M and B parameters.

Proof. We begin by asserting that a lower bound on the cache complexity in the
IC model translates into a lower bound on the I/O complexity in the EM model,
and viceversa, since the IC model adopts an optimal off-line replacement policy
[21]. Moreover, the lower bound provided in Theorem 3 is tight since it can
be matched by the upper bound given in Corollary 5. Assume, for the sake of
contradiction, thatA attains optimal cache complexity for each value ofM and
B. In particular, consider two models C1=IC(M,B1) and C2 = IC(M,B2) where
B2 is a multiple of B1, and let Q1 and Q2 be the cache complexities of A in the
two models, respectively. We will show that B1 and B2 can be suitably chosen
so that Q1 and Q2 cannot be both optimal, thus reaching a contradiction. To
achieve this goal, we apply the simulation technique described in the previous
subsection to A, and obtain an algorithm A′ for the EM(2M,B2) solving the
same problem of A. We then apply an adaptation of Lemma 1 (which is based
on a technical result given in [3] for bounding from below the number of
disk accesses of matrix transposition in the EM model) to A′, and we prove
the impossibility of the simultaneous optimality of A in the two IC models.
We denote with Q and QI the I/O complexity and the number of inputs,
respectively, of A′; remember that Q ≤ 4Q2 and QI ≤ 2Q2.

Let the i-th target group, 1 ≤ i ≤ N/B2, be the set of entries that will
ultimately be in the i-th B2-block of the output vector (remember that it
must be entirely in the disk at the end of A′). Let γ be a B2-block of the disk
or a B2-row of M2; the togetherness rating of γ after q I/Os is defined as:

Cγ(q) =
N/B2∑
i=1

f(xγ,i),

where xγ,i denotes the number of entries in γ belonging to the i-th target group
just before the (q + 1)-st I/O. These entries are not included in the working
set W(q) and are not NIL symbol. We also define the togetherness rating for
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the working set W(q) as:

CW(q) =
N/B2∑
i=1

f(si),

where si is the number of entries in the working setW(q) which belong to the
i-th target group just before the (q + 1)-st I/O. The potential function of A′
after q I/Os is defined as:

POT (q) = CW(q) +
∑

γ∈disk
Cγ(q) +

∑
γ∈M2

Cγ(q).

At the beginning and at the end of the algorithm the above definition is
equivalent to the one given in Section 3; then, by Equations 6, POT (0) =
N log(B2/2

ψΣ(logB2,N)), and POT (Q) = N logB2. Hence, POT (Q)−POT (0) =
NψΣ(logB2, N).

We now bound the increase in the potential function due to an input; the
eviction of a block from the memory does not affect the potential. Suppose
that the q-th I/O is an input and a B2-block γ is fetched into a B2-row of
M2. Before the q-th input, the intersection between γ and the working set
W(q − 1) was empty; after the input, at most K = Q1B1/Q2 entries of γ are
inserted into W(q − 1). We use the following notation:

• si: number of entries in the working setW(q−1) belonging to the i-th target
group;
• ki: number of entries in γ belonging to the i-th target group just before the
q-th miss;
• wi: number of entries in the (at most) K words, inserted in W(q − 1),

belonging to the i-th target group.

The si, ki and wi values are limited by the following constraints:

N/B2∑
i=1

si ≤ 2M −K
N/B2∑
i=1

ki ≤ B2

N/B2∑
i=1

wi ≤ K.

The increase in the potential function due to the q-th miss (∆POT (q)) is:

∆POT (q) =
N/B2∑
i=1

[f(si + wi) + f(ki − wi)− f(si)− f(ki)]

≤
N/B2∑
i=1

[f(si + wi)− f(si)− f(wi)] . (19)

By the definition of the convex function f (Equation 5), an upper bound on
∆POT (q) is obtained by setting si = (2M −K)/(N/B2) and wi = K/(N/B2)
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in Inequality 19:

∆POT (q) ≤
N/B2∑
i=1

si log
si + wi
si

+ wi log
si + wi
wi

≤ K log e+K log
2M

K
= K log

2eM

K
,

since (1 + 1/x)x ≤ e if x ≥ 1. Let C1 be a cache with more than 2ψΣ(logB1,N)

lines, while C2 be a cache with less than 2ψΣ(logB2,N) lines. By Theorem 3,
cN/B1 ≤ Q1 ≤ dN/B1 for two suitable positive constants c and d. Since the
number of input operations is QI ≤ 2Q2 (remember that an output does not
increase the potential and that K = Q1B1/Q2),

POT (Q)− POT (0) ≤
QI∑
q=1

∆POT (q) ≤ 2Q2K log
2eM

K
≤ 2dN log

2eMQ2

cN
.

By recalling that POT (Q)− POT (0) = N log 2ψΣ(logB2,N),

N log 2ψΣ(logB2,N) ≤ 2dN log
2eMQ2

cN
.

Hence,

Q2 ∈ Ω

N 2
ψΣ(logB2,N)

2d

M

 . (20)

Since ψΣ(i, N) is not decreasing in i for each i < (logN)/2, for N and M large
enough, we can choose B2 = εM for a suitable constant 0 < ε < 1 such that
the number 1/ε of cache lines in C2 is less than 2ψΣ(logB2,N). Thus,

Q2 ∈ Ω

N2
ψΣ(log(εM),N)

2d

M

 ∈ ω (NψΣ(log(εM), N)

M

)
.

However, by optimality of A and Theorem 3, Q2 must be Θ
(
N ψΣ(log(εM),N)

M

)
when B2 = εM , which yields a contradiction. 2

The above theorem proves that any cache-oblivious algorithm which performs
the rational permutations defined by Σ cannot be cache-optimal for each value
of M and B. Matrix transposition and bit-reversal are examples of rational
permutations which, by Equation 3 and 4, satisfy the hypothesis of Theo-
rem 10. Thus, Theorem 10 implies that cache-oblivious algorithms for matrix
transposition or the bit-reversal of a vector cannot exhibit optimal cache com-
plexity for all values of the cache parameters. Note that Theorem 10 does
not rule out the existence of an optimal cache-oblivious algorithm for some
particular ranges of the cache parameters. Indeed by Theorem 9, there exists
an optimal cache-oblivious algorithm under the tall cache assumption.
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6 Conclusions

In this paper we studied various aspects concerning the execution of ratio-
nal permutations in a cache-RAM hierarchy and, more generally, through the
adoption of the cache-oblivious setting, in multi-level cache-hierarchies. We
first proved a lower bound on the work complexity of any algorithm that exe-
cutes rational permutations with optimal cache complexity. By virtue of this
bound we were able to show the work optimality of the cache-aware algorithm
derivable from the one in [16], which exhibits optimal cache complexity. Then,
we developed a cache-oblivious algorithm for performing any rational per-
mutation which exhibits optimal cache and work complexities under the tall
cache assumption. When the rational permutation is a matrix transposition,
our cache-oblivious algorithm represents an iterative version of the recursive
cache-oblivious algorithm given in [5]. Finally, we proved that for certain fam-
ilies of rational permutations, including matrix transposition and bit-reversal,
a cache-oblivious algorithm which achieves optimal cache complexity for all
values of the IC parameters cannot exist. This result specializes to the case of
rational permutations the result proved in [8] for general permutations, and it
is achieved by means of a simulation technique which formalizes the approach
used in [8].

To the best of our knowledge, the only impossibility results of the kind of
those proved in this paper and in [8], were proved in [9]. An interesting av-
enue for further research would be to assess the limits of the cache-oblivious
approach for other fundamental computational problems. Moreover, deeper
investigations are required to understand why, in certain cases, the tall cache
assumption is so crucial to obtain optimal cache-oblivious algorithms.
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